Spectral properties of G-symbolic Morse shifts

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral properties of G-symbolic Morse shifts

— A large class of G-symbolic Morse dynamical systems with simple spectrum is described, where G is a finite, abeban group. The problem of spectral multiplicity in case G == Z^ n is a prime number and x ssb x bx . .. is solved. Some examples of special substitutions having non-homogeneous spectra is presented.

متن کامل

Spectral isomorphisms of Morse flows

A combinatorial description of spectral isomorphisms between Morse flows is provided. We introduce the notion of a regular spectral isomorphism and we study some invariants of such isomorphisms. In the case of Morse cocycles taking values in G = Zp, where p is a prime, each spectral isomorphism is regular. The same holds true for arbitrary finite abelian groups under an additional combinatorial...

متن کامل

Spectral and topological properties of a family of generalised Thue-Morse sequences

The classic middle-thirds Cantor set leads to a singular continuous measure via a distribution function that is know as the Devil’s staircase. The support of the Cantor measure is a set of zero Lebesgue measure. Here, we discuss a class of singular continuous measures that emerge in mathematical diffraction theory and lead to somewhat similar distribution functions, yet with significant differe...

متن کامل

Random Morse Functions and Spectral Geometry

We study random Morse functions on a Riemann manifold (M, g) defined as random Fourier series of eigenfunctions of the Laplacian of the metric g. The randomness is determined by a fixed Schwartz function w and a small parameter ε > 0. We first prove that, as ε → 0, the expected distribution of critical values of this random function approaches a universal measure on R, independent of g, that ca...

متن کامل

Morse functions on the moduli space of G 2 structures

The moduli space of complex structures on a compact Riemann surface of genus 1 or ≥ 2 can be identified with the deformation space of Riemannian metrics of constant curvature 0 or −1, while the latter definition natually gives rise to the Weil-Peterson metric. Let M be a compact manifold of domension 7 with an integrable G2 structure, i.e., a differential 3-form φ that satisfies dφ = 0, and d ∗...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Société mathématique de France

سال: 1987

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.2067